

COMUNICACIÓN TÉCNICA

Aprovechamiento geotérmico del agua de mina. Aplicación al hospital Vital Alvarez-Buylla de Mieres (Asturias)

Autor: Illán Arribas Iglesias

Institución: Universidad de Oviedo

e-mail: arribas8@gmail.com

Otros Autores: Jorge Xiberta Bernat (Universidad de Oviedo); Antonio José Gutiérrez Trashorras (Universidad de Oviedo)

RESUMEN

La climatización del nuevo hospital 'Vital Álvarez-Buylla', situado en la localidad de Mieres (Asturias) está prevista que tenga lugar con Energía Geotérmica utilizando el agua infiltrada en las minas de carbón próximas al emplazamiento del edificio. Los pozos Barredo y Figaredo, situados cerca del solar donde se pretende construir el hospital ya cuenta con una instalación de bombeo para la climatización geotérmica de una parte del campus Universitario de Mieres, (concretamente el centro de investigación y la residencia de estudiantes), es por tanto razonable considerar que estos mismos pozos puedan aportar el agua de climatización del hospital utilizando la tecnología de la bomba de calor. Al interés energético de proyecto, hay que sumarle el económico ya que: el sistema que forman los dos pozos considerados (Barredo-Figaredo) están conectados con el pozo Aller, el cual es encuentra actualmente en actividad, es por ello que se ha de evacuar el agua de infiltración con objeto de permitir las labores mineras en este último pozo. Asimismo, el pozo Barredo se encuentra por encima del núcleo urbano de Mieres y si se dejará inundar sin control, el agua se infiltraría y crearía conductos subterráneos que podrían generar escapes al núcleo urbano, afectando a las edificaciones colindantes con el pozo, y también el medioambiental ya que esta fuente energética no genera emisiones como sucede en la combustión de recursos fósiles tradicionales.

Palabras Clave: Geotermia, Agua de mina, Hospital, bomba de calor

Contenido

	1.Introducción y generalidades	4
	2.Bomba de calor: Funcionamiento y aplicación	9
	3. Metodología: Diseño y elección de equipos para el sistema geotérmico	11
	4.Resultados: Comparativa con otros sistemas	19
	5.Presupuesto	20
	6.Bibliografía	22
Índice	e de figuras	
	Figura 1 Situación del Proyecto	4
	Figura 2 Perfil geotérmico A del Pozo Barredo	5
	Figura 3 Perfil geotérmico B del Pozo Barredo	5
	Figura 4. Tabla de caudales bombeados entre 2002 y 2007	6
	Figura 5. Esquema de funcionamiento de una bomba de calor	10
	Figura 6. Catálogo comercial de la casa CARRIER	12
	Figura 7. Intercambiador de calor de apoyo	15
	Figura 8. Intercambiador de calor principal	15
	Figura 9. Tabla comparativa de los distintos polímeros	16
	Figura 10. Tabla de valores tabulados de la fórmula de Darcy-Weisbach	17
	Figura 11. Catálogo comercial de la casa PLOMYLEN	18
	Figura 12 Tabla de comparación entre diferentes sistemas de climatización	19
	Figura 13. Presupuesto aproximado del Proyecto	22

1 Introducción y generalidades

El proyecto de construcción del nuevo hospital "Vital Álvarez-Buylla", situado en la localidad de Mieres (Asturias), tiene planificado el levantamiento de un nuevo edificio para los servicios sanitarios de dicha villa y alrededores.

Este proyecto propone buscar un sistema de climatización basado en energías renovables, particularmente geotermia, utilizando como fuente renovable el agua infiltrada en las minas de carbón cercanas al emplazamiento del edificio. La climatización del complejo se planteó inicialmente a partir de una instalación con calderas de gas.

Los pozos Barredo y Figaredo están situados cerca del solar donde se pretende construir el hospital, ambos se encuentran conectados entre sí, por tanto forman un único sistema subterráneo, que en adelante llamaremos pozo Barredo y es en este brocal donde se encuentra una instalación de bombeo. La figura 1, muestra la situación geográfica de los pozos.

Figura 1 Situación del Proyecto

La distancia a la que se encuentra el pozo Barredo de la ubicación del nuevo hospital es de 1873 m, y es la misma que debe recorrer un sistema de tuberías para conducir el agua, todo ello de forma segura y un coste económico aceptable.

La temperatura a la que se encuentra el agua de Barredo oscila entre los 22°C y 24°C, lo que la hace apta para su utilización mediante bombas de calor. Durante este estudio se realizaron perfiles con sondas térmicas, las cuales dieron como resultado los perfiles térmicos que se muestran en la figura 2 y 3.

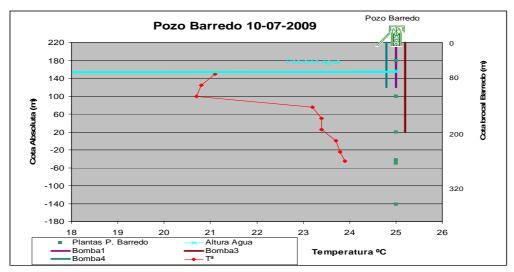


Figura 2 Perfil geotérmico A del Pozo Barredo

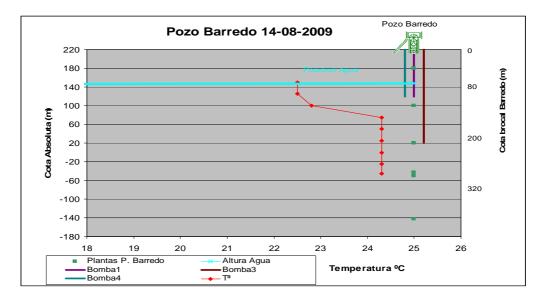


Figura 3 Perfil geotérmico B del Pozo Barredo

En los últimos 10 años se renovaron los equipos de bombeo del agua del pozo y con la instalación de cuatro bombas autoportantes se inició la succión de agua. Es importante señalas, que el bombeo ha de realizarse con independencia de que el agua sea o no aprovechada, ya que el pozo Barredo se encuentra por encima del núcleo urbano de Mieres y si se deja inundar sin control, el agua se infiltraría y crearía conductos por el interior de la tierra hasta llegar a producirse escapes; en caso de ocurrir esto, el agua llegaría al núcleo urbano, afectando en gran medida las edificaciones colindantes con el pozo.

A efectos de este estudio, el pozo se dejó inundar para sus posibles aplicaciones geotérmicas, en estos momentos, el agua se encuentra a 60 metros desde la boca del pozo. Esta altura favorece el bombeo ya que no se requiere un gran gasto de energía extra para realizar dicha tarea. Es importante, destacar que el caudal de agua que se puede evacuar del pozo Barredo, supera ampliamente las necesidades de agua del hospital, como muestra la figura 4 que contiene los datos de bombeo en m³ hasta el año 2007 (año en el que se dejó de bombear agua para inundar el pozo con vistas a aplicaciones geotérmicas):

	2007	2006	2005	2004	2003	2002	Caudal promedio
Enero	212.429	419.374	398.240	627.775	333.146	244.335	372.550
Febrero	198.952	397.375	428.424	647.604	519.669	226.319	403.057
Marzo	264.540	635.227	780.532	636.519	532.065	258.585	517.911
Abril	501.235	504.652	647.790	539.111	391.078	245.085	471.492
Mayo	376.767	379.065	508.821	447.803	328.403	358.292	399.859
Junio	311.420	307.320	396.546	417.456	283.448	374.582	348.462
Julio	360.473	268.068	329.275	364.857	273.690	368.487	327.475
Agosto	290.381	238.379	259.326	330.591	260.864	341.611	286.859
Sept.	245.186	213.340	234.143	283.108	226.868	298.484	250.188
Octubre	197.897	219.734	240.301	267.786	215.447	284.557	237.620
Nov.	162.616	191.384	230.970	255.566	226.421	255.566	220.420
Dic.	186.609	191.538	283.704	287.827	345.133	287.827	263.773
TOTAL ANUAL	3.308.504	3.965.456	4.738.072	5.106.003	3.936.232	3.543.730	4.099.666

Figura 4. Tabla de caudales bombeados entre 2002 y 2007

Vemos que el volumen de agua anual del que disponemos supera, incluso en el peor de los casos, los 3 millones de metros cúbicos, cantidad de agua suficiente para cubrir las necesidades térmicas de cualquier edificio.

Nos encontramos por tanto con una situación donde tenemos un recurso (el agua de mina) que ha de ser extraído aunque no sea utilizado, así como un sistema para su aprovechamiento.

Considerando todos los datos anteriores (caudal anual medio aproximado) de 4.000.000 m³, se puede realizar un cálculo del potencial térmico del pozo que se obtiene aplicando la fórmula:

$$P_{_{f}} = Q \cdot C_{_{p}} \cdot \rho \cdot \Delta T = \frac{4 \cdot 10^{6} \, m^{3} \cdot 4186 J \cdot kg^{-1} \cdot K^{-1} \cdot 1000 Kg \cdot m^{-3}}{365 \cdot 24 \cdot 3600 s} \cong 2,65 MW_{_{t}}$$

Donde:

ΔT → Salto térmico (°C) aprovechable por el sistema de explotación elegido. En el caso de la utilización geotérmica mediante empleo de tecnología de bomba de calor, los equipos comerciales aprovechan saltos térmicos medios de 5°C. La instalación de equipos de salto térmico 10°C, podría ser viable en algunos casos e incrementaría notablemente el recurso geotérmico disponible.

Q → Caudal evacuado anualmente (m³/año), que para este cálculo consideraremos caudal de 4 Hm³/año

Ce → Calor específico del agua (J/Kg.ºC)

ρ → Densidad del agua (Kg./m³)

Si tenemos en cuenta los coeficientes de eficiencia que en climas suaves alcanzan las bombas comerciales, podremos calcular la energía necesaria para el funcionamiento del compresor, que representa el consumo energético del sistema.

Las bombas de calor agua-agua habituales ofrecen valores de COP \geq 5, las cuales pueden producir agua caliente a 45°C.

El potencial térmico del foco caliente será $P_c = P_f + W_e$, siendo W_e el trabajo aportado al compresor de la bomba de calor. Por tanto:

$$COP = \frac{P_c}{W_e} = \frac{P_f + W_e}{W_e} = 1 + \frac{P_f}{W_e} \ge 5 \implies W_e \le \frac{P_f}{4}$$

$$W_e \cong 0,66MW$$

A partir de estos datos se considera que el rendimiento de las bombas de calor habituales con un consumo de 0,66 MW_{eléctricos} generaría una potencia térmica de calefacción de:

$$2,65+0,66=3,31$$
 MW_t.

Puesto que, la bomba estaría disponible durante 24 horas diarias, supondría una energía térmica anual disponible para calefacción de:

Consumiendo únicamente:

 $0,66.24.365 = 5.782 \text{ MWh}_{eléctricos}/año.$

2 Bomba de calor: Funcionamiento y aplicación

La manera de aprovechar el agua, es utilizar la tecnología de la bomba de calor, cuyo funcionamiento se basa en el principio físico del cambio de estado de un fluido.

Si disponemos de un fluido al que mediante una pequeña aportación de energía conseguimos que cambie de estado, o sea, que pase de líquido a gas y viceversa, este entregará el calor que transporta, por tanto, la aportación de calor se basa en la cesión o absorción de calor latente (de cambio de estado).

Estas máquinas, básicamente constan de un circuito cerrado por el que circula un fluido que cambiará de estado controladamente dentro de unos intercambiadores, en uno de ellos se evaporará extrayendo energía en forma de calor, y en el otro se condensará entregando está energía. Un compresor y una válvula de expansión son los causantes del cambio de estado del fluido. Este cambio de estado puede producir frío o calor según se requiera.

Existen tres tipos básicos de bombas de calor

- -Bomba a calor aire-aire: el calor que se toma del aire se transfiere directamente al aire del local que debe calentarse o enfriarse.
- -Bomba a calor aire-agua: el calor se toma del aire y se transfiere a un circuito de agua que abastecerá un suelo/techo radiante/refrescante, radiadores, ventiloconvectores o aerotermos.
- -Bomba a calor agua-agua: el sistema toma el calor de un circuito de agua en contacto con un elemento que le proporcionará el calor (la tierra, capa freática) para transferirlo a otro circuito de agua como en el caso anterior. Es el sistema generalmente adoptado por la geotermia y el tipo de bombas que se van a utilizar para este proyecto.

Para la comprensión de cómo funciona una bomba de calor, debemos suponer dos zonas bien diferenciadas, denominadas focos, una de las cuales está a una temperatura más

alta que la otra; el foco cuya temperatura es más alta se denomina foco caliente, mientras que la zona con la temperatura más baja, se llama foco frío.

El principio de funcionamiento es relativamente sencillo; si se pretende que la bomba de calor trabaje en modo de calefacción, la bomba actúa absorbiendo el calor del foco caliente y cediéndolo al foco frío, esto es fácil de ejemplificar en nuestro caso: El agua caliente llega a la bomba de calor (foco caliente), donde intercambia su calor con el refrigerante que se encuentra en el evaporador, y gracias a este calor cedido por el agua, pasa al estado gaseoso. (Ver figura 5).

El refrigerante pasará por un proceso de compresión, donde aumentará su presión y temperatura, o lo que es lo mismo, su energía interna. Posteriormente, entrará en un condensador, que en este caso se denomina foco caliente, cediendo su energía interna en forma de calor hasta convertirse en líquido nuevamente. Tras esto, pasará por una válvula de expansión, donde perderá el resto de energía hasta volver a encontrarse a la misma temperatura de entrada en el evaporador para repetir el ciclo.

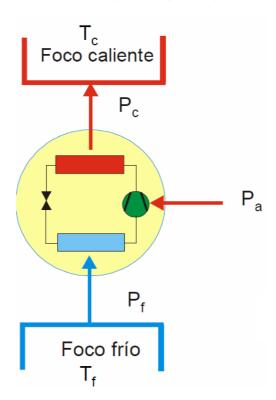


Figura 5. Esquema de funcionamiento de una bomba de calor

Si se pretende que la bomba de calor trabaje en frío o modo de refrigeración, los focos frío y caliente se invierten, de manera que el principio básico de funcionamiento se basa en que el foco frío le cede su calor al foco caliente, y de esta manera, dicho foco frío se mantiene a la temperatura deseada. En esta ocasión, el fluido llega al evaporador (foco frío) con una temperatura inferior a la que queremos generar en el ambiente, y es el ambiente, el cual cede calor al fluido que circula por la bomba de calor, de esta manera, por un lado el ambiente se enfría y el fluido circulante pasa a estado gaseoso.

Acto seguido, este fluido se dirige al compresor donde aumenta más su presión y temperatura, para cederle su energía interna de cambio de estado al foco caliente (condensador). Cuando el fluido sale del compresor en estado líquido, pasa por la válvula de expansión, que lo enfría bruscamente, para volver de nuevo al evaporador y absorber calor de este de nuevo.

3 Metodología: Diseño y elección de equipos para el sistema geotérmico

El sistema geotérmico que se va a utilizar, ha de diseñarse para que todos sus equipos trabajen de forma óptima con el menor gasto de dinero posible. Los equipos necesarios para la climatización del hospital son:

Bomba de calor:

La bomba de calor, cuyo funcionamiento ya se ha explicado previamente, ha sido elegida de entre multitud de catálogos comerciales de diferentes casas, ya que, este método es mucho más práctico que el cálculo de una bomba de calor ideal. Las bombas de calor, son el sustituto de las calderas de gas/gasoleo, por ello, han de situarse en el habitáculo pensado para albergarlas.

El tipo de bomba de calor escogido, determinará el volumen de agua necesario, por tanto, se dimensionará tanto el bombeo de agua, como el tipo de tubería que se va a elegir. La temperatura de salida del agua en la bomba de calor, también viene determinada según el equipo elegido; dicho dato es particularmente importante por la posibilidad de mezclar agua de salida, con agua de entrada y compensar así las temperaturas, con lo que se puede evitar el bombeo desde agua de mina.

El proyecto de construcción inicial, contaba con dos calderas de combustible (gasóleo + gas natural) cuya potencia era de unos 850 kW. cada una. Las necesidades de frío eran cubiertas por otras dos máquinas enfriadoras de 700 kW cada una. Por tanto, la bomba de calor elegida es de la casa CARRIER, particularmente el modelo 30XWHP-712, donde sus características principales se presentan en la figura 6.

0XW	30					35					40					45					50				
	Qc	Qh	Unit	Cool	Cool	Qc	Qh	Unit	Cool	Cool	Qc	Qh	Unit	Cool	Cool	Qc	Qh	Unit	Cool	Cool	Qc	Qh	Unit	Cool	Coc
	kW	kW	kW	l/s	kPa	kW	kW	kW	Vs.	kPa	kW	kW	kW	l/s	kPa	kW	kW	kW	l/s	kPa	kW	kW	kW	Vs	kPa
					30XW	-/30X																			
452		564	75	23,6	41	476	554	85	22,7	38	444	532	97	21,2	33	416	517	110	19,8	29	387	501	125	18,5	26
552	549	628	86	26,2	50	536	625	98	25,6	48	499	602	112	23,8	42	472	588	128	22,5	37	439	571	145	20,9	33
602	559	636	86	26,6	51	541	631	98	25,8	49	519	623	114	24,8	45	498	617	130	23,8	41	476	612	149	22.7	38
652	705	803	107	33,6	48	681	790	120	32,5	46	635	760	138	30,3	40	587	732	159	28,0	35	544	708	181	25,9	30
702	767	872	116	36,5	56	735	854	131	35,1	52	684	822	152	32,6	46	639	797	173		41	592	771	198	28,2	35
802	813	928	127	38,7	63	796	927	144	37,9	60	737	885	163	35,1	53	680	848	185	32,4	45	498	641	157	23,8	26
852	849	965	127	40.5	62	844	979	148	40,2	61	797	951	169	38,0	55	741	917	193	35,3	49	621	814	212	29,6	39
1002	1069	1217	163	51,0	79	1024	1192	184	48,8	73	960	1152	210	45,8	65	890	1108	239	42,4	57	826	1074	272	39,4	50
1052	1122	1277	171	53,5	86	1068	1244	193	50,9	79	1007	1209	222	48,0	71	928	1157	251	44,3	61	843	1102	284	40,2	51
1152	1166	1324	173	55,6	69	1156	1338	200	55,1	68	1096	1306	230	52,3	62	1050	1291	264	50,1	57	1001	1282	308	47.7	53
1252	1327	1498	187	63,3	74	1265	1457	211	60,3	68	1189	1409	242	56,7	60	1109	1362	278	52,9	53	1031	1319	316	49,2	46
1352	1426	1610	203	68,0	85	1349	1560	232	64,3	77	1269	1510	265	60,5	68	1187	1462	302	56,6	60	1102	1415	344	52.5	52
1452	1547	1750	223	73,8	100	1463	1695	255	69.7	90	1377	1643	292	65,7	80	1289	1592	333	61,4	70	1197	1543	380	57,1	61
1552	1649	1867	239	78,6	113	1560	1808	274	74.4	101	1465	1749	313	69,8	90	1366	1691	357	65,1	79	1265	1634	405	60,3	68
1652	1719	1940	243	81.9	64	1664	1918	279	79,3	60	1589	1885	325	75,8	54	1519	1860	374	72,4	50	1444	1834	429	68.8	45
1702	1795	2026	253	85,6	70	1739	2003	290	82,9	65	1660	1967	337	79,2	59	1581	1935	389	75,4	54	1501	1905	444	71,5	48
Inidad	de al	ta efic	ciencia	a 30XV	V-P/30	XWHP	17				10			177		5)			927		1)			17.5	
512	521	588	74	24,8	28	512	590	86	24,4	27	488	577	98	23,3	25	464	567	113	22,1	23	443	560	129	21,1	21
562	592	669	84	28,2	35	581	669	97	27,7	34	551	653	112	26,3	31	526	643	129	25,1	28	502	636	147	23,9	26
712	760	856	106	36.2	33	740	851	122	35,3	32	706	835	141	33,7	29	674	821	163	32,1	27	641	811	187	30,6	25
812	811	918	118	38,7	38	789	912	134	37,6	36	752	895	157	35,9	33	718	884	182	34,2	30	685	875	209	32,6	28
862	882	997	126	42,0	44	865	997	145	41,2	42	820	972	168	39,1	38	780	956	193	37,2	35	741	943	221	35.4	32
1012	1021	1158	150	48,7	45	1047	1205	174	49,9	47	991	1172	199	47,2	42	943	1150	228	44,9	39	900	1137	260	42,9	35
1162	1201	1352	166	57.3	61	1165	1339	191	55,5	58	1111	1312	220	53,0	53	1062	1292	253	50,6	49	1014	1277	289	48.3	44
1312	1349	1518	186	64,3	39	1320	1516	216	62,9	37	1252	1478	249	59,7	34	1201	1461	286	57,2	31	1147	1446	328	54,7	28
1462	1511	1701	209	72,0	49	1474	1694	242	70,3	47	1414	1668	279	67.4	43	1352	1644	321	64,5	39	1291	1627	369	61,6	36
1612	1682	1895	234	80,2	58	1632	1874	266	77,8	55	1556	1840	312	74,2	50	1489	1817	361	71,0	46	1419	1795	414	67,6	42
1762	1800	2031	255	85,8	66	1764	2028	290	84.1	64	1674	1984	341	79,8	58	1580	1940	396	75,3	52	1499	1914	456	71.4	47
ryenda kW kW itkW ool l/s	Capac Capac Const Caude	2031 cidad fri cidad ca amo da si de ag	255 gorifica alorifica la unida pua del e	85,8	66 presore	110000000000000000000000000000000000000	2028	290			J. 25/201			1000		25.532.10					11/2/34				

Figura 6. Catálogo comercial de la casa CARRIER

Debemos escoger la bomba que permita una salida de agua del condensador a 30°C, debido a que el agua de mina llega a unos 24°C y se calienta hasta 29°C para que el fluido de la bomba de calor se condense, y así poder aprovechar su calor latente para dar frío al sistema.

Esto nos lleva al modelo 712 (columna de la izquierda). Con este dato se procede a calcular le eficiencia o COP:

$$COP_{30XWHP712} = \frac{Potencia térmica / frigorífica}{Consumo eléctrico} = \frac{760 / 856}{106} = 7,16 / 8,14$$

Es decir, por cada unidad de energía eléctrica cedida a la bomba, esta nos devuelve 8.16 unidades de energía térmica, y 7.16 unidades de energía frigorífica. Por tanto si se colocan cuatro bombas, se desarrollará una potencia total calorífica de:

$$863,4 \times 4 = 3455,6 \text{ KW}$$

La potencia frigorífica será:

$$760 \times 4 = 3040 \text{ KW}$$

El consumo eléctrico tendrá un valor de:

$$106,2 \times 4 = 424,8 \text{ KW}$$

Los elementos principales de la bomba de calor tienen las siguientes características: Información del evaporador:

Tipo de fluido......Agua

Factor de ensuciamiento......0,018 (sqm-K)/KW

Temperatura de salida......7°C

Temperatura de entrada......12°C

Caudal de fluido......36,23 l/s

Información del condensador

Tipo de fluido.....Agua

Factor de ensuciamiento......0,018 (sqm-K)/KW

Temperatura de salida.....30°C

Temperatura de entrada.....25°C

Caudal de fluido.....41,50 L/s

Por tanto, se considera un caudal superior a 41.5 l/s, tanto para saber que cantidad de agua debemos bombear, como para calcular el resto de equipos

Debido a que los equipos no están preparados para el uso de agua de mina, se hace necesario introducir unos intercambiadores de calor entre la mina y las tuberías que llevan el agua a las bombas de calor.

Intercambiador de calor con agua de mina

El agua de mina contiene una serie de impurezas que pueden dañar tanto las bombas de calor como el circuito de tuberías, por ello, el agua de mina cederá su calor a un circuito secundario de agua limpia con objeto de evitar las incrustaciones tanto en las tuberías como en el condensador y en el evaporador de la bomba de calor.

Los intercambiadores estarán situados en la boca del pozo, en invierno uno de ellos cubrirá las demandas principales de calefacción y otro más pequeño actuará de apoyo en caso de grandes demandas.

Los intercambiadores fueron escogidos de la casa SEDICAL, y mediante el programa informático proporcionado por la misma casa, se pueden diseñar los intercambiadores en función de las necesidades del hospital. A continuación se muestran las capturas de pantalla para cada uno de los intercambiadores elegidos. (Ver figura 7 y 8).

Figura 7. Intercambiador de calor de apoyo

Figura 8. Intercambiador de calor principal

Cálculo de la tubería

Una vez que tenemos tanto las bombas de calor como los intercambiadores, solo se requiere calcular que tipo de tubería satisface mejor las necesidades del hospital. Para ello, hemos de elegir el material con el cual pretendemos construir la tubería. Por manejo, durabilidad y debido a que el fluido utilizado es agua, se elegirá una tubería plástica, en lugar de una tubería de fundición, hormigón o cualquier otro material. Las tuberías plásticas que existen en el mercado desde hace mucho tiempo, pero su uso no ha empezado a extenderse hasta los últimos 15 años. Realizamos un estudio de las características de diferentes polímeros, que se refleja en la figura 9.

Material	ABS	Polipropileno	Polietileno	PVC	PRFV
Alargamiento a la Rotura (%)	45	15-30	-	15	-
Coeficiente de Fricción	0,5	0,1-0,3	0,29	0,3	0,1
Módulo de Tracción (GPa)	2,1-2,4	0,9-1,5	0,5-1,2	3,6	3,6-4,4
Resistencia a la Tracción (MPa)	41-45	25-40	15-40	40	63
Resistencia al Impacto Izod (J m ⁻¹)	200-400	20-100	20-210	50-200	42
Absorción de Agua - en 24 horas (%)	0.3-0.7	0,03	0,01	0,03	0,6
Densidad (g cm ⁻³)	1,05	0,9	0,95	1,4	1,8
Conductividad térmica (W/m-K)	0.25	0.20-0.30	0.30-0.45	0.15-0.25	0.31
Resistencia a los Ultra-violetas	Mala	Mala	Mala	Media	Mala

Figura 9. Tabla comparativa de los distintos polímeros

Debido a que las características más importantes son la conductividad y la absorción de agua, y todos los materiales poseen buenos datos en cuanto a esto, se eligió una tubería de polietileno, debido al bajo coste del material en comparación con el resto.

Las pérdidas de carga continuas (por unidad de longitud), J, deben calcularse, en general, mediante la fórmula experimental de Darcy-Weisbach. Pueden aceptarse para el PE un valor de k = 0,003 mm (rugosidad absoluta; fórmula de Colebrook), y bajo esta

hipótesis, se tabula la pérdida de carga por unidad de longitud J, así como la velocidad y el diámetro interno, según la fórmula de Darcy-Weisbach. Estos valores se reflejan en la figura 10.

0.07(4)	ID 20	0 mm	ID 30	0 mm	ID 40	0 mm	ID 50	0 mm	ID 600 mm		
Q (L/s)	J (m/m)	v (m/s)	J (m/m)	v (m/s)							
25	0,002	0,796	0,001	0,354	0,000	0,199	0,000	0,127	0,000	0,088	
50	0,006	1,592	0,002	0,707	0,000	0,398	0,000	0,255	0,000	0,177	
75	0,014	2,387	0,003	1,061	0,000	0,597	0,000	0,382	0,000	0,265	
100	0,026	3,183	0,005	1,415	0,001	0,796	0,000	0,509	0,000	0,354	

Figura 10. Tabla de valores tabulados de la fórmula de Darcy-Weisbach

Si se utilizan dos tuberías, el caudal que circula por cada una de ellas es el correspondiente a dos bombas de calor:

$$Q = 41.50 \cdot 2 = 83 \text{ l/s}$$

Conviene que la velocidad a la que se desplaza el agua sea lo menor posible, y se estima que valores entre 1 y 1.5 m/s son adecuados, ya que por un lado, no produce muchas pérdidas de carga, y por otro lado, es suficiente para que el agua se mueva con cierta fluidez.

Interpolando para ID = 300mm:

$$\frac{83-75}{100-75} = \frac{J_{83} - 0,003}{0,005 - 0,003} \Rightarrow J_{83} = 0,00364 \text{ m/m}$$

$$\frac{83-75}{100-75} = \frac{v_{83} - 1,061}{1,415 - 1,061} \Rightarrow v_{83} = 1,1743 \text{ m/s}$$

Este diámetro parece correcto, ya que da un valor acorde de la velocidad . La distancia calculada de la tubería tiene un valor $L=1783\ m$. por lo que la pérdida de carga continua en la tubería se puede calcular:

$$\Delta H_c = J_{83} \cdot L = 0,00364 \text{ m/m} \cdot 1783 \text{ m} = 6,49 \text{ m (por tramo)}$$

La pérdida de carga en conducción total es de 1,41bar, pero al utilizar el bombeo para llevar el agua de la mina al hospital, estas pérdidas pueden aumentar, aunque nunca más de un 400%, por lo que, fijándonos en el catálogo, se puede escoger la tubería de la primera columna, correspondiente a PE100 (polietileno de alta densidad) con un diámetro interior lo más cercano a 300, y preferiblemente superior para aumentar así la seguridad y reducir las pérdidas al máximo.

Se ha elegido un catálogo de la casa comercial PLOMYLEN; dicha empresa ofrece tubos de PE100, en el cual se fija el interés del proyecto, con una amplia gama de diámetros. En la figura 11 se muestra el catálogo de la casa PLOMYLEN, y en él, se señala el tubo escogido, para calcular posteriormente sus pérdidas de temperatura.

														(Med	didas en	mm)
SDR		33 26			21		17	1	3,6	1	11		9	7	',4	
S		16 12,5		10 8		6,3 5		4		3	3,2					
Tipo								ión Non	ninal (b	ar)						
PE 80		4		5		6		8	1	10	10	2,5	1	16	20	
PE 100	5			6		8		10	1.	2,5	1	16	2	20	- 2	25
SN (kN/m²)		2		4		8	1	16	3	32	6	64	8	30	1	28
DN							Espe	sor Non	ninal (m	ım)						
De	е	Di	е	Di	е	Di	e	Di	e	Di	е	Di	е	Di	е	Di
20											2.0	16.0	2.3	15.4	3.0	14.0
25									2.0	21.0	2.3	20.4	3.0	19.0	3.5	18.0
32							2.0	28.0	2.4	27.2	3.0	26.0	3.6	24.8	4.4	23.2
40					2.0	36.0	2.4	35.2	3.0	34.0	3.7	32.6	4.5	31.0	5.5	29.0
50			2.0	46.0	2.4	45.2	3.0	44.0	3.7	42.6	4.6	40.8	5.6	38.4	6.9	36.2
63			2.5	58.0	3.0	57.0	3.8	55.4	4.7	53.6	5.8	51.4	7.1	48.8	8.6	45.8
75			2.9	69.2	3.6	67.8	4.5	66.0	5.6	63.8	6.8	61.4	8.4	58.2	10.3	54.4
90			3.5	83.0	4.3	81.4	5.4	79.2	6.7	76.6	8.2	73.6	10.1	69.8	12.3	65.4
110			4.2	101.8	5.3	99.4	6.6	96.8	8.1	93.8	10.0	90.0	12.3	85.4	15.1	79.8
125			4.8	115.4	6.0	113.0	7.4	110.2	9.2	106.6	11.4	102.2	14.0	97.0	17.1	90.8
140			5.4	129.2	6.7	126.6	8.3	123.4	10.3	119.4	12.7	114.6	15.7	108.6	19.2	101.6
160			6.2	147.6	7.7	144.6	9.5	141.0	11.8	136.4	14.6	130.8	17.9	124.2	21.9	116.2
180			6.9	166.2	8.6	162.8	10.7	158.6	13.3	153.4	16.4	147.2	20.1	139.8	24.6	130.8
200			7.7	184.6	9.6	180.8	11.9	176.2	14.7	170.6	18.2	163.6	22.4	155.2	27.4	145.2
225			8.6	207.8	10.8	203.4	13.4	198.2	16.6	191.8	20.5	184.0	25.2	174.6	30.8	163.4
250			9.6	230.8	11.9	226.2	14.8	220.4	18.4	213.2	22.7	204.6	27.9	194.2	34.2	181.6
280			10.7	258.6	13.4	253.2		246,8	20.6	238.8	25.4	229.2	31.3	217.4	38.3	203.4
315	9.7	295.6	12.1	290.8	15.0	285.0	18.7	277.6	23.2	268.6	28.6	257.8	35.2	244.6	43.1	228.8
355	10.9	333.2	13.6	327.8	16.9	21.2	21.1	312.5	26.1	302.8	32.2	290.6	39.7	275.6	48.5	258.0
400	12.3	375.4	15.3	369.4	19.1	361.8	25.1	352.6	29.4	341.2	36.3	327.4	44.7	310.6	54.7	290.6
450	13.8	422.4	17.2	415.6	21.5	407.0	26.7	396.6	33.1	383.8	40.9	368.2	50.3	349.4	61.5	327.0
500	15.3	469.4	19.1	461.8	23.9	452.2	29.7	440.6	36.8	426.4	45.4	409.2	55.8	388.4		
560	17.2	525.6	21.4	517.2	26.7	506.6	33.2	493.6	41.2	477.6	50.8	458.4				
630	19.3	591.4	24.1	581.8	30.0	570.0	37.4	555.2	46.3	537.4	57.2	515.6				
710	21.8	666.4	27.2	655.6	33.9	642.2	42.1	625.8	52.2	605.6						
800	24.5	751.0	30.6	738.8	38.1	723.8	47.4	705.2	58.8	682.4						
900	27.6	844.8	34.4	831.2	42.9	814.2	53.3	793.4								
1000	30.6	938.8	38.2	923.6	47.7	904.6	59.3	881.4								
1200	36.7	1126.6	45.9	1108.2	57.2	1085.6										
1400	42.9	1314.2	53.5	1293.0												
1600	49.0	1502.0	61.2	1477.6												

Figura 11. Catálogo comercial de la casa PLOMYLEN

Una de las razones fundamentales de elegir esta casa comercial es el bajo precio de sus tuberías. El precio oscila entre los 20 y los 60 € por metro de longitud, dependiendo del espesor, que, como se ha mencionado es uno de los datos fundamentales y sobre el que se sustenta el cálculo de las pérdidas de temperatura en el fluido que circula por el interior de la tubería.

4 Resultados: Comparativa con otros sistemas

Uno de los pilares básicos del uso de energía geotérmica, es la reducción de emisiones de dióxido de carbono respecto a otros sistemas. Se puede hacer un cálculo bastante preciso de las emisiones de CO2 evitadas con la utilización de geotermia en lugar de otros sistemas convencionales.

Para calcular los consumos de calefacción del hospital:

Potencia instalada = 4x839 KW (Bombas de calor)

Estimación de carga: 50% = 2014 KW

Uso anual de calefacción = 10 horas al día durante 200 días

Consumo del hospital = 3500000 Kwh./año

En la figura 12 se muestra a la comparativa con otros sistemas:

Emisiones	de CO ₂				
Sistema	Eficiencia Equipo	Precio Energía (€/Kwh.)	Ratio de emisiones (gr/Kwh.)	Emisiones totales (Ton/año)	Reducción alcanzada (%)
Chiller	3	0,1173	600,00	700,00	63,14%
Gas Natural	0,8	0,0380	230,00	805,00	67,95%
Gasóleo	0,8	0,0800	318,00	1.113,00	76,82%
Geotermia	8,14	0,1173	600,00	257,99	

Figura 12 Tabla de comparación entre diferentes sistemas de climatización

A esto habrá que sumarle la construcción de diferentes depósitos tanto para gas natural como para gasóleo, cuyo volumen se puede calcular:

Gas natural

Densidad del gas natural = 0.017 Kg./m³

PCI del gas natural = 42000 Kcal./Kg

$$3500000 \frac{\text{KW} \cdot \text{h}}{\text{año}} \cdot \frac{3600 \text{s}}{1 \text{h}} \cdot \frac{1 \text{KJ}}{1 \text{KW} \cdot \text{s}} \cdot \frac{0.24 \text{Kcal}}{1 \text{KJ}} \cdot \frac{1 \text{Kg}}{42000 \text{Kcal}} \cdot \frac{1 \text{m}^3}{0.017 \text{Kg}} = 17.65 \cdot 10^6 \frac{\text{m}^3}{\text{año}}$$

Gasóleo

Densidad del gasóleo = 850 Kg./m³

PCI del gas natural = 10200 Kcal./Kg

$$3500000 \frac{\text{KW} \cdot \text{h}}{\text{año}} \cdot \frac{3600 \text{s}}{1 \text{h}} \cdot \frac{1 \text{KJ}}{1 \text{KW} \cdot \text{s}} \cdot \frac{0.24 \text{Kcal}}{1 \text{KJ}} \cdot \frac{1 \text{Kg}}{10200 \text{Kcal}} \cdot \frac{1 \text{m}^3}{850 \text{Kg}} = 348.8 \frac{\text{m}^3}{\text{año}}$$

5 Presupuesto

El presupuesto aproximado para el desarrollo de este proyecto se muestra en la figura 13. Nótese que no se incluyen las bombas sumergibles que se encuentran en el pozo Barredo (ya instaladas) ni las bombas de calor (la climatización depende del hospital). Los precios por unidad se obtienen haciendo una estimación de diversos proyectos del grupo HUNOSA.

EQUIPO	UNIDADES	CANTIDAD	PRECIO UNITARIO (€)	COSTE TOTAL (€)
MOVIMIENTO DE TIERRAS	-	-	-	580.025,87
Picado pavimento existente con medios mecánicos	m²	4375,00	8,50	37.187,50
Excavación de zanja para todo tipo de terrenos	m ³	13125,00	25,00	328.125,00
Relleno de zanja con arena de aportación	m ³	12630,20	17,00	214.713,37
ESTRUCTURAS	-	_	-	100.625,00
Losa de protección de hormigón in situ espesor 15 cm	m²	4375,00	23,00	100.625,00
URBANIZACIÓN	-	-	-	180.250,00
Reposición de pavimento existente a base de asfalto, doleras de hormigón armado y aceras pavimentadas con baldosa hidráulica	m ²	4375,00	38,00	166.250,00
Firme con tierra de aportación	m ²	4375,00	3,20	14.000,00
TUBERÍAS	-	-	-	362.460,00
Tubería PE	m	7000,00	50,00	350.000,00
Cableado de control por bus + tubo corrugado de PVC	m	14000,00	0,89	12.460,00
BOMBEO HORIZONTAL	-	-	-	7.169,00
SEDICAL SIM100-315	UD	2,00	4002,00	8.004,00
SEDICAL SIM100-290	UD	2,00	3167,00	6334,00
INTERCAMBIADORES DE CALOR	-	_	-	55.481,00

SEDICAL UFP/103-LM	UD	2,00	14820,00	29.640,00
SEDICAL UFP/153-LM	UD	1,00	25841,00	25.841,00
PRESUPUESTO TOTAL	-	-	-	1.296.346,87

Figura 13. Presupuesto aproximado del Proyecto

6 Bibliografía

- [1] Estudio sobre la inundación de los pozos mineros en la zona Barredo-Valle del Turón-Valle del Aller. Enero 2009. **Grupo HUNOSA**, **IGME**, **Universidad de Oviedo**.
- [2] Desagüe del pozo Barredo. Diciembre 2004. Grupo HUNOSA
- [3] Repercusión de la inundación de los Pozos San José y Figaredo sobre las labores mineras de los Pozos Santiago y Barredo. Julio 2004. **Grupo HUNOSA**
- [4] Repercusión de la inundación de los Pozos San José y Figaredo sobre el nivel freático. Junio 2004. **Grupo HUNOSA**
- [5] Estudio hidrogeológico de la repercusión de la inundación del pozo Barredo (Mieres, Asturias). Diciembre 2005. **AITEMIN**
- [6] Especificaciones técnicas de bombas sumergibles, motores y accesorios 50 Hz GRUNDFOS ™ . 2010

- [7] Nueva instalación de bombeo para desagüe y suministro de agua a edificios del campus universitario de Mieres mediante bombas sumergibles en caña del Pozo Barredo. Febrero 2010. **Grupo HUNOSA**
- [8] Tuberías de PVC. Manual técnico y programa de cálculo. Edición 2006. AseTUB (AENOR)
- [9] Tuberías de polietileno. Manual técnico. Edición 2008. AseTUB (AENOR)
- [10] MASA. Tubos y sistemas. 2001-2010. MASA Tubos y sistemas www.masa.es/B.propiedades || www.masa.es/B.clasificacion.
- [11] Manual técnico ABS. Edición 2008. DTP pipe Systems
- [12] Tuberías de poliéster reforzado con fibra de vidrio(Manual técnico). Edición Marzo 2008. AseTUB (AENOR)
- [13] Tubería de Polipropileno para conducción de agua fría y caliente bajo presión.

 Proyecto en Norma de consulta pública. NCh.3151.c200. http://www.siss.cl/articles-5853 recurso 5.pdf
- [14] MONOGRAFÍA: "MATERIALES NO CONVENCIONALES: POLIPROPILENO HOMOPOLÍMERO ISOTACTICO". 2002 C.Boin. F.Ciancio. L.S. López. Dpto Mecánica aplicada y estructuras. Universidad del Rosario (Méjico)
- [15] Instalación de tuberías para abastecimiento, riego y saneamiento según normativa vigente. Mayo 2010. **ADEQUA Uralita.**
- [16] Mantenimiento de intercambiadores de calor. Mayo 2010. Thermoequipos C.A

- [17] Introducción a la Teoría de la Transferencia de Calor. Mayo 2010. **Thermoequipos**C.A
- [18] PROCESS COMPONENT DESIGN.. P. Buthod & all, "Heat Exchangers Design".
 Universidad de Tulsa .Oklahoma
- [19] MANUAL DEL INGENIERO QUÍMICO. "Transferencia de Calor". "Equipos de Transferencia de Calor".7ª Edición. McGraw Hill 2001. Perry & Chilton.
- [20] Geothermal Heat Pumps. A guide for planning & installing. Earthscan 2008 Karl Ochsner & Robert Curtis
- [21] La bomba de calor. Fundamentos, técnicas y aplicaciones. McGraw Hill 1993. R. Monasterio. P. Hernandez. J. Saiz. M
- [22] Ficha técnica R-134. . 2009. GAS Servei. S.L.
- [23] Ficha de datos de seguridad R-134. . 2009. GAS Servei. S.L.
- [24] FLUID MECHANICS (With engineering applications). 9ª Edición. McGraw Hill. 1997.
 J.B.Franzini. E.J. Finnemore
- [25] SEMEJANZA HIDRODINÁMICA Y ANÁLISIS DIMENSIONAL. 2008. Pedro Fernández Díez http://es.libros.redsauce.net/index.php?folderID=10
- [26] CÁLCULO DE TUBERÍAS. 2008. **Pedro Fernández Díez** http://es.libros.redsauce.net/index.php?folderID=10